Prof. Dr.-Ing. Barbara Deml | Karlsruher Institut für Technologie

Prof. Dr.-Ing. Barbara Deml ist Leiterin des Instituts für Arbeitswissenschaft und Betriebsorganisation am KIT und Mitglied der Arbeitsgruppe Arbeit/Qualifikation, Mensch-Maschine-Interaktion der Plattform Lernende Systeme.

Freund und Helfer: Wie Menschen und soziale Roboter zusammenarbeiten

Wie kann Künstliche Intelligenz (KI) sozial interaktive Robotik ermöglichen? Um das zu beantworten, muss man zunächst die Frage stellen: Was versteht man unter sozialen Robotern? Soziale Roboter sind ein Gegenentwurf zum Industrieroboter. Sie sind keine autonomen Werkzeuge, sondern interaktive Partner. Dazu zählen Spielzeugroboter, wie Roboterhunde, Serviceroboter im Bereich der Pflege oder Therapie, Kollaborationsroboter, sogenannte Cobots, im industriellen Kontext, aber auch Softwareroboter, wie Chatbots. Oft sind es auch Roboter, deren Gestalt einem menschlichen Körper ähnelt oder die menschenähnliche Eigenschaften aufweisen. Man spricht dann von humanoiden Robotern. Soziale Roboter sollen in der Lage sein, mit uns zu kommunizieren, um eine vertrauensvolle Beziehung aufzubauen. Das erfordert vor allem soziale Intelligenz, für die wiederum KI eine wesentliche Voraussetzung ist:

  • KI ermöglicht es, menschliche Sprache und den Kontext von Gesprächen zu verstehen. Im Idealfall können soziale Roboter so eine menschenähnliche Konversation führen.
  • Mittels KI können Gesichter erkannt und Mimik oder Gesten analysiert werden. Das erlaubt es sozialen Robotern, Emotionen oder Handzeichen zu erkennen und angemessen darauf zu reagieren.
  • Durch maschinelles Lernen kann ein Roboter aus Erfahrungen oder durch Beobachtung lernen. Soziale Roboter können sich so an individuelle Präferenzen und Bedürfnisse ihrer Benutzer anpassen. Das ermöglicht personalisierte Interaktionen.

Wie kann ein Roboter menschliche Emotionen wie Stress erkennen? Wie erkennen wir Menschen, ob unsere Mitmenschen gestresst sind oder ob sie sich zum Beispiel freuen oder ärgern? In der Regel interpretieren wir unbewusst den Kontext sowie verschiedene verbale und non-verbale Signale wie Lächeln, Stirnrunzeln, Augenbrauenheben oder andere Gesichtsbewegungen. Auch, die Art und Weise, wie jemand spricht – einschließlich Tonfall, Geschwindigkeit und Betonung – kann viel über unsere emotionale Verfassung verraten. Dazu gibt es in der Psychologie eine lange Forschungstradition. Viele dieser Verhaltensindikatoren sind heute gut beschrieben und lassen sich mittlerweile auch durch technische Sensoren eines Roboters beobachten. Fortschritte in der Sprache-, Bild- und Videoanalyse ermöglichen es Robotern, Körperhaltungen, Gesichtsausdrücke, Pupillenreaktionen, Änderungen im Tonfall oder der Sprechgeschwindigkeit zu erkennen. Roboter können Bewegungsmuster oder das Interaktionsverhalten mit technischen Geräten analysieren. Eine Kombination aus mehreren solcher Sensorinformationen ermöglicht es dann auf Emotionen zu schließen. Aber, natürlich gelingt das nicht immer hundertprozentig. Auch wir Menschen liegen mit unserer Emotionserkennung nicht immer richtig.

Wie kann eine humanoide Robotik menschengerecht in der Pflege zum Einsatz kommen?

Eine menschengerechte Technikgestaltung stellt immer die Bedürfnisse, Fähigkeiten und Präferenzen der Benutzer in den Mittelpunkt. Genauso verhält es sich, wenn humanoide Roboter in der Pflege eingesetzt werden sollen. An oberster Stelle steht die Frage: Was sind die Bedürfnisse, Fähigkeiten und Präferenzen der Pflegekräfte und der Pflegenden bei der Interaktion mit einem Roboter?

  • Humanoide Roboter können entwickelt werden, um älteren oder pflegebedürftigen Menschen bei alltäglichen Aufgaben zu helfen, wie beim Aufstehen, Anziehen, Zubereiten von Mahlzeiten und anderen grundlegenden Tätigkeiten. Das kann die Unabhängigkeit der Menschen fördern und gleichzeitig das Pflegepersonal entlasten.
  • Humanoide Roboter können mit Sensoren ausgestattet werden, um die Umgebung zu überwachen und Alarm zu schlagen, wenn ungewöhnliche Aktivitäten oder Notfälle erkannt werden. Das ist besonders nützlich in Pflegeeinrichtungen oder bei älteren Menschen, die allein leben.
  • Roboter können dazu verwendet werden, Medikamente zu verteilen und daran zu erinnern, dass sie eingenommen werden müssen. Das ist besonders wichtig für Menschen mit komplexen Medikamentenplänen.
  • Humanoide Roboter können so gestaltet werden, dass sie soziale Interaktionen ermöglichen und Gesellschaft leisten können. Das kann insbesondere für ältere Menschen wichtig sein, die sich möglicherweise einsam fühlen.

Es ist wichtig, dass humanoide Roboter in der Pflege ethisch und sensibel eingesetzt werden. Das beinhaltet die Berücksichtigung der Privatsphäre und die Gewährleistung der Sicherheit. Humanoide Roboter sind nicht dazu gedacht, menschliche Pflegekräfte zu ersetzen, sondern vielmehr, um sie zu unterstützen und die Pflegequalität zu verbessern.

Empfohlener redaktioneller Inhalt

An dieser Stelle finden Sie einen externen Inhalt von YouTube, der den Artikel ergänzt. Sie können ihn sich mit einem Klick anzeigen lassen und wieder ausblenden.

Dr. Dorothea Koert | Technische Universität Darmstadt

Dr. Dorothea Koert ist Leiterin der Nachwuchsgruppe IKIDA am Intelligent Autonomous Systems Lab der TU Darmstadt und Mitglied der Arbeitsgruppe Lernfähige Robotiksysteme der Plattform Lernende Systeme.

Wie Roboter lernen

Die möglichen Aufgaben, die Roboter in Zukunft im Alltag übernehmen können, sind vielfältig – ebenso wie die Vorlieben ihrer Benutzer, auf welche Weise sie durch einen Roboter unterstützt werden wollen. Dies macht eine reine Vorprogrammierung zukünftiger Roboter fast unmöglich. Die Fähigkeit, neue Aufgaben in Interaktion mit Menschen zu erlernen, wird daher zu einer Schlüsselkomponente für die Entwicklung intelligenter Robotersysteme.

Um einem großen Teil der Gesellschaft die Teilhabe an lernfähigen Robotern zu ermöglichen, ist es dabei essenziell, dass Roboter in der Lage sind, auch von Alltagsnutzenden ohne Programmiervorkenntnisse neue Aufgaben zu erlernen.

Lernen von Demonstrationen und Feedback

Zwei vielversprechende Ansätze, wie Roboter von Menschen lernen können, sind das Lernen von Demonstrationen und das interaktive Reinforcement-Lernen. Beim Lernen von Demonstrationen können Roboter entweder vom Menschen "an die Hand genommen" und durch die Aufgabe geführt werden oder sie beobachten Menschen, die selbst eine Aufgabe durchführen, probieren anschließend das Gesehene zu verstehen und zu kopieren. Menschliche Demonstrationen können dabei zum einen genutzt werden, um bekannte Teilaufgaben wiederzuerkennen und in neuer Rheinfolge auszuführen, sowie um komplett neue Bewegungs- und Aufgabenabläufe zu erlernen.

Beim interaktiven Reinforcement-Lernen hingegen nutzen Roboter durch Interaktion mit Menschen gewonnenes Feedback, um vorher Erlerntes iterativ zu verbessern. Menschen können dabei Roboter während der Ausführung ihrer Aufgaben bewerten. So können Roboter zusätzlich auch persönliche Präferenzen ihrer Nutzer für Aufgabendurchführungen lernen. Feedback kann hierbei entweder explizit zum Beispiel über Tablet oder Spracheingabe gegeben werden, oder Roboter lernen durch implizites Feedback, also dadurch, wie ihr Verhalten menschliches Verhalten oder den Erfolg der Aufgabendurchführung beeinflusst.

Menschliche Fehlerquellen beim Lernen

Lernfähige Robotiksysteme, die durch direkte Interaktion mit Menschen lernen und zuvor Gelerntes verbessern können, verfügen über großes Potenzial in vielen Einsatzbereichen. Voraussetzung: Die Roboter sind sicher. Eine wichtige Frage aktueller Forschung ist daher, wie man Roboter und die von ihnen genutzten Algorithmen gegen fehlerhafte oder unerwünschte menschliche Demonstrationen absichern kann. Im Gegensatz zu klassisch programmierten Robotern sollte bei lernfähigen Robotiksystemen zum Beispiel sichergestellt werden, dass sie potenzielle Unsicherheiten oder Inkonsistenz in menschlichem Feedback verstehen. Ebenso wichtig ist es, dass die Roboter einen zuvor definierten Kernaufgabenbereich auch durch menschliche Demonstrationen nicht verlassen können.

Die Entwicklung von sicheren und menschenzentrierten zukünftigen Lernalgorithmen erfordert deswegen insbesondere interdisziplinäre Forschung aus Kognitionswissenschaften, Robotik und Maschinellem Lernen. Ziel ist es zu verstehen, wie Menschen Demonstrationen und Feedback geben und geben wollen und zu erkunden, wie die Roboter der Zukunft davon am besten lernen können.

Elsa Kirchner

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Empfohlener redaktioneller Inhalt

An dieser Stelle finden Sie einen externen Inhalt von YouTube, der den Artikel ergänzt. Sie können ihn sich mit einem Klick anzeigen lassen und wieder ausblenden.

Oskar von Stryk

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Empfohlener redaktioneller Inhalt

An dieser Stelle finden Sie einen externen Inhalt von YouTube, der den Artikel ergänzt. Sie können ihn sich mit einem Klick anzeigen lassen und wieder ausblenden.